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Abstract

Linear algebra is a powerful and proven tool in web search. Techniques, such as the PageRank algorithm
of Brin and Page and the HITS algorithm of Kleinberg, score web pages based on the principal eigenvector
(or singular vector) of a particular non-negative matrix that captures the hyperlink structure of the web
graph. We propose and test a new methodology that uses multilinear algebra to elicit more information
from a higher-order representation of the hyperlink graph. We start by labeling the edges in our graph with
the anchor text of the hyperlinks so that the associated linear algebra representation is a sparse, three-way
tensor. The first two dimensions of the tensor represent the web pages while the third dimension adds
the anchor text. We then use the rank-1 factors of a multilinear PARAFAC tensor decomposition, which
are akin to singular vectors of the SVD, to automatically identify topics in the collection along with the
associated authoritative web pages.
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Higher-Order Web Link Analysis
Using Multilinear Algebra

1 Introduction

PageRank [5, 31], which underlies the Google and Yahoo! search engines, and HITS [23] are two significant
algorithms for determining the importance of web pages. The PageRank [5, 31] scores are given by the entries
of the principal eigenvector of a Markov matrix of page transition probabilities across the entire web (see,
e.g., [25] for a detailed description of PageRank). Thus, PageRank is a global score that depends only on the
topology of the Web and does not take page content or the query into account. Query responses are compiled
by combining the PageRank score with other heuristics that ensure a good term match. Occasionally, this
can lead to peculiar query responses; for example, the top site currently returned by Google for a search on
“tomatoes” is http://www.rottentomatoes.com, a website that rates movies.

HITS [23], on the other hand, first compiles a focused subgraph of the Web that is assumed to be “rich
in relevant pages.” The principal singular vectors of the adjacency matrix of the focused subgraph define the
best authorities and hubs for the query. The HITS score is query-specific in that it computes the authority
scores of the pages after it compiles a subset of web pages. Unfortunately, Kleinberg [23] and others [3, 9]
have observed that the authorities and hubs do not always match the original query due to “topic drift,” i.e.,
nodes in the focused subgraph are not related to the query topic. Appropriate authorities and hubs generally
appear in some pair of singular vectors, but Davison et al. [11] note that selecting the appropriate singular
vectors is an open research question.

Both PageRank [5, 31] and HITS [23] use appropriate eigenvectors (or singular vectors) to compute the
authority of web pages and can be considered as members of the same family [13]. Other methods adhere to
the same basic theme. For example, SALSA is a variant on HITS that uses a stochastic iteration matrix [26].

In this paper, we propose a new method called Topical Hypertext Induced Topic Selection (TOPHITS),
following Kleinberg [23]. This new technique analyzes a semantic graph that combines anchor text with
the hyperlink structure of the web. Anchor text is useful for web search because it behaves as a “consensus
title” [17]. Fig. 1 shows four hypothetical web pages and the corresponding semantic graph. The adjacency

Animals today are being threatened
by a variety of environmental
pressures.   For example, the jaguar
is losing prime habitat in the world.
Zoos are trying to raise awareness of
their plight.

We have a new exhibit opening next
month highlighting the endangered
species of the Americas, including the
jaguar.

Rain Forest Zoo

Jaguar FAQ
Jaguars are an endangered species
that live in the tropical rain forests of
Central and South America.  They live
about 11 years in the wild and up to
22 years at a zoo.

Online Atlas

Endangered Species

View maps of animal habitats from
around the world, including those of
endangered animals in North, South,
and Central America.  

Website 1

jaguar

Website 3

zoo

America

America

endangered

Website 4

Website 2
endangered

specieszoo

jaguar

Figure 1. The web pages on the left yield the semantic graph on the right. The edges of the graph are labeled with the
anchor text of the links.

structure of a semantic graph cannot be modeled as a matrix without losing edge type information. Instead,
it is modeled by a three-way tensor containing both hyperlink and anchor text information; see Fig. 2. Then
we apply the Parallel Factors (PARAFAC) decomposition [21], which is a higher-order analogue of the SVD,
to get the most significant factors that are akin to singular vectors. Instead of pairs of vectors containing
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Figure 2. A three-way tensor that models the semantic graph in Fig. 1.

authority and hub scores, we produce triplets of vectors with authority and hub scores for the pages as well as
topic scores for the terms. This is an extension of Kleinberg’s HITS algorithm [23], which uses the singular
vectors of the hyperlink matrix (a two-way tensor) to produce multiple sets of hubs and authorities. The
addition of the topic vector means that determining which set of singular vectors contains the answer to
the query is just a matter of looking at which topic vectors have a high score for the query terms and then
considering the corresponding hubs and authorities. Like PageRank, TOPHITS is query-independent because
the computation of the significant vectors can potentially be done in advance and off-line. This approach
incorporates ideas from Latent Semantic Analysis (LSA) [16, 2, 15, 14], a popular method in text retrieval
that uses dimensionality reduction to improve search. LSA has been used in many domains, including term
suggestions for online advertisers [19].

2 Related Work

2.1 Topic Drift

The problem of topic drift in HITS has been addressed by using a weighted adjacency matrix that increases
the likelihood that the principal singular vectors relate to the query. The Clever system [7, 8] uses the content
of the anchors and surrounding text to give more weight to those pages that are linked using terms in the
search query, while Bharat and Henzinger [3] and Li et al. [27] incorporate weighting based on the content
of the web pages.

2.2 Incorporating Text Information

We are not the first to propose the simultaneous analysis of hyperlink structure and anchor text or page
content. Diligenti et al. [12] propose a modification of PageRank that uses a topic classifier instead of the
random surfer model. Rafiei and Mendelzon [32] modify the page transition probabilities for PageRank based
on whether or not a term appears in the page. Further, they derive a propagation model for HITS and adapt the
same modification in that context. Haveliwala [22] introduced a topic-sensitive PageRank that pre-computes
several PageRank vectors that are biased towards particular topics. Richardson and Domingos [33] propose a
general model that incorporates a term-based relevance function into PageRank. The relevance function can
be defined in many ways, such as defining it to be 1 for any page that includes the term, and 0 otherwise. In
an approach that is very similar in spirit to ours, though different in the mathematical implementation, Cohn
and Hofmann [10] combine probabilistic LSI (PLSI) and probabilistic HITS (PHITS) so that terms and links
rely on a common set of underlying factors.
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2.3 Our Contribution

Our contribution is the use of a PARAFAC decomposition [21] (also known as the Canonical Decomposition
or CANDECOMP decomposition [6]) on a three-way tensor representing the web graph with anchor-text-
labeled edges. Although tensor decompositions have a long history and have been used in applications
ranging from chemometrics [35] to image analysis [37], they have not yet been applied to the problem of
link analysis.

3 Problem Setting & Evaluation

3.1 HITS

We briefly review the HITS [23] method. Let n denote the number of pages in our web (sub-)graph. Every
page has a hub score (h) and an authority score (a), which are computed iteratively as follows:

h(t+1)
i =

∑
i→j

a(t)
j for i = 1, . . . , n, and

a(t+1)
j =

∑
i→j

h(t+1)
i for j = 1, . . . , n,

(1)

The iterates h and a are normalized after each iteration. In words, the hub score of page i is equal to the sum
of the authority scores of all the pages to which it points; conversely, the authority score of page i is equal to
the sum of the hub scores of all pages that point to it.

Equivalently, these equations can be expressed in matrix form. Let A denote the n× n adjacency matrix
of our graph, defined by

Aij =

{
1 if i → j,

0 otherwise,

where i → j denotes that page i links to page j. The equations in (1) become

h(t+1) = A a(t), and a(t+1) = AT h(t+1). (2)

Under appropriate conditions, these iterates converge to the principal singular vectors of the adjacency matrix,
cf. [20].

Recall that the first p factors of the singular value decomposition (SVD) of A yield the best rank-p
approximation, assuming p < rank(A) [20]. Thus, we can approximate A as

A ≈
p∑

i=1

σ(i) u(i) ◦ v(i). (3)

Here σ(1) ≥ σ(2) ≥ · · · ≥ σ(p) > 0 are the first p singular values, and u(i) and v(i) are the corresponding
singular vectors. The notation a ◦ b denotes the vector outer product so that (a ◦ b)ij = aibj . See Fig. 3 for
an illustration of the SVD.

As mentioned above, the iterates defined in (2) converge to the principal singular vectors:

h(t) → h∗ = u(1) and a(t) → a∗ = v(1).

Furthermore, each pair {u(i),v(i)} identifies a set of related authorities and hubs for the graph [23]. Our
new method, described in the next section, discovers triplets of vectors that identify a topic (described by key
terms) along with its associated hubs and authorities.
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Figure 3. In HITS model, the SVD provides a 2-way decomposition that yields authority and hub scores.

3.2 TOPHITS

The TOPHITS method produces sets of triplets {u(i),v(i),w(i)} where the u and v vectors contain hub and
authority scores for the web pages as in HITS, and the w vector contains topic scores for the terms.

Just like HITS, these scores can be computed iteratively. Let n denote the number of pages and m the
number of terms. The hub, authority, and topic scores are updated as follows:

h(t+1)
i =

∑
i

k→j

a(t)
j t(t)

k for i = 1, . . . , n,

a(t+1)
j =

∑
i

k→j

h(t+1)
i t(t)

k for j = 1, . . . , n,

t(t+1)
k =

∑
i

k→j

a(t+1)
j h(t+1)

i for k = 1, . . . ,m.

(4)

Here, the notation i
k→ j means page i links to page j with anchor text k. As with HITS, we normalize

after each iteration. In words, the hub score of page i is the sum of authority scores for pages that i points to
multiplied by the corresponding topic scores of the terms in the anchor text. Similarly, the authority score of
page j is the sum of hub scores of all pages that point to j multiplied by the topic scores of the corresponding
terms in the anchor text. The topic score of term k is the sum of hub scores for page i multiplied by the
authority scores for page j over all hyperlinks i → j that involve term k in the anchor text.

This can be written in tensor form as follows. Let A denote the n × n × m adjacency tensor of a web
(sub-)graph, defined by

Aijk =

{
1 if i → j with anchor text k,

0 otherwise.

Then the equations in (4) can be expressed as:

h(t+1) = A ×̄2 a(t) ×̄3 t(t),

a(t+1) = A ×̄1 h(t+1) ×̄3 t(t),

t(t+1) = A ×̄1 h(t+1) ×̄2 a(t+1).

(5)

The notation A ×̄i x indicates that the tensor A should be multiplied by the vector x in dimension i. For
example,

h = A ×̄2 a ×̄3 t

says to multiply A by a in the second dimension and by t in the third dimension. The result is

hi =
n∑

j=1

m∑
k=1

Aijkajtk for i = 1, . . . , n.

(See [1] for more details on notation.) Under appropriate conditions, these iterations will converge to the best
rank-1 approximation of A.
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Figure 4. In TOPHITS, the PARAFAC model provides a 3-way decomposition that yields authority, hub, and topic
scores.

In Section 4.3, we describe a method for computing a PARAFAC decomposition [21] of A which yields
a rank-p approximation of a tensor A of the form

A ≈
p∑

i=1

σ(i) u(i) ◦ v(i) ◦w(i), (6)

where a◦b◦c indicated a three-way outer product so that (a◦b◦c)ijk = aibjck. Fig. 4 shows an illustration
of the PARAFAC decomposition.

Unlike the SVD, there is no guarantee that the rank-p PARAFAC approximation will be optimal [24].
Furthermore, the PARAFAC vectors are not orthogonal; i.e., u(1) is not orthogonal to u(2), as would be the
case for the SVD.

However, the algorithm in Section 4.3, under suitable conditions, computes the best rank-1 approximation
of A as the first factor so that

h(t) → h∗ = u(1), a(t) → a∗ = v(1), t(t) → t∗ = w(1).

The largest entries in w(1) define the dominant topic terms for the first factor, while the largest entries in
the u(1) and v(1) vectors define the dominant hubs and authorities for the topic. Each factor of (6), i.e.,
{u(i),v(i),w(i)}, yields another topic and corresponding hubs and authorities.

4 Methodology

4.1 The Data

We tested our technique on a subset of web data, generated using an in-house web crawler that includes
anchor text in its output. Stop words, punctuation, and non-integer numbers were removed. Any hyperlink
without anchor text was assigned the term “no-anchor-text”. In order to avoid the edge effects inherent in
small web crawls, it was assumed that URLs with no recorded outlinks were never crawled and so were
excluded from the data set. Finally, we considered only host-to-host links (rather than page-to-page links)
and removed all self-links that point from one host to the same host.

The three-way tensor is computed by counting the number of links from host i to host j with term k and
storing the result as Cijk. We perform an element-wise scaling of C, which attenuates the influence of highly
linked hosts:

Aijk =

{
1 + log(Cijk) if Cijk 6= 0,

0 otherwise.
(7)

9



4.2 Working with Sparse Tensors

Working with multi-way data is a challenge due to the lack of available software. Although a few packages
do exist for working with dense tensors (see, e.g., [1]), nothing is available for sparse tensors. Our web
graph data is extremely sparse. For example, storing a host graph with 10,000 hosts and 10,000 terms in
a dense tensor storage format would require one trillion entries, which rules out any type of dense storage
format. Thus, in order to work with this data in sparse form, we developed the capability to mathematically
manipulate sparse, large-scale tensors.

We implemented our methods in MATLAB by extending our existing toolbox of dense tensor classes [1],
details of which will be in a forthcoming report. We have created a sparse tensor object (or class) in
MATLAB that stores the data in sparse format and can efficiently manipulate it. We support multiplication,
scaling, accumulation across dimensions, operations on individual elements, and permutations in addition
to standard operations like adding, subtracting, etc. For example, we have been able to run the greedy
PARAFAC algorithm (described in Section 4.3) to work with data sets as large as 50,000 by 50,000 by
50,000 with 500,000 nonzeros on a laptop. In addition, to the sparse tensor class, we have a separate
class for storing a PARAFAC decomposition.

Efficiency is achieved by carefully selecting a storage format and using built-in MATLAB functions to
avoid any loops. We use a coordinate-based storage scheme in which each non-zero is stored along with its
indices; e.g., we store i, j, k, and Aijk. This proved to be more feasible than any type of compressed format,
as is often used for sparse matrices, because tensor manipulations require indexing by each dimension.

4.3 Algorithm

To determine the leading factors of our TOPHITS method, we compute a low-rank, approximate PARAFAC
decomposition (6) of the sparse tensor A. As outlined above, we use the iteration defined by (5), which is
called the higher-order power method [35], to compute the best rank-1 tensor that minimizes the Frobenius
norm of the difference from A. Computing an approximation to the best rank-p decomposition is simply a
matter of iterating on this concept. To compute the kth rank-1 tensor, we apply the higher-order method to
the current residual:

R(k) = A−
k−1∑
i=1

σ(i) u(i) ◦ v(i) ◦w(i).

We avoid computing the residual explicitly by instead computing the products (e.g., R ×̄1 x ×̄2 y) on each
term individually. Thus, each iteration of the power method on R(k) involves three tensor-vector-vector
products with A and then 4(k − 1) vector inner products.

The complete algorithm is in Fig. 5. We call this procedure the greedy PARAFAC decomposition because
it calculates a rank-1 factor to R(k) without considering changes to the factors previously computed. An
alternative method employs a different alternating least squares approach that simultaneously solves for all
vectors in the same mode (e.g., all u(i), 1 ≤ i ≤ p) [35]. However, in our experiences, such an approach is
slow to converge and does not yield any significant improvements in our results over the greedy approach.

5 Results

We started our web crawler from the following URL: http://www-neos.mcs.anl.gov/neos (an
optimization web page) and allowed it to crawl 4700 pages, resulting in 560 cross-linked hosts.

Fig. 6 shows the authorities derived from the HITS approach [23], using the SVD applied to the standard
adjacency matrix (i.e., Aij = 1 if i → j). We show results from the first several singular vectors, omitting
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In: A of size n× n×m.

Out: Rank-p approximation of A, returned as p triplets
{u(i),v(i),w(i)} plus weights σ(i) for i = 1, . . . , p.

For k = 1, 2, . . . , p, do:

Initialize x,y, z to be vectors of all ones of length
n, n, m, resp.

Repeat:
x =

A ×̄2 y ×̄3 z−
k−1X

i=1

σ(i)u(i)(yT v(i))(zT w(i))

y =

A ×̄1 x ×̄3 z−
k−1X

i=1

σ(i)v(i)(xT u(i))(zT w(i))

z =

A ×̄1 x ×̄2 y −
k−1X

i=1

σ(i)w(i)(xT u(i))(yT v(i))

λ = ‖x‖ ‖y‖ ‖z‖, and normalize x,y, z

Until the change in λ is small.

Set u(k) = x, v(k) = y, w(k) = z, σ(k) = λ

End do.

Figure 5. Greedy PARAFAC Algorithm

negative entries because they were repeats of earlier sets of authorities and other sets that were also repeats
(e.g., the fifth singular vector contained repeats from several of the first four vectors).

Using our greedy PARAFAC algorithm from Fig. 5 on the tensor A defined by (7), we computed the first
twenty factors of the scaled adjacency tensor. The cost of each iteration is O(N) where N is the number
of nonzeros in the tensor A. This is approximately the same cost of each iteration of the power method for
computing the SVD because the number of nonzeros in the tensor representation is not much more than that
in the matrix representation. Fig. 7 shows that we only require a few iterations for each factor.

Figures 8 and 9 show sets of topics and authorities derived from the TOPHITS approach. As before, we
omitted repetitive results. For each factor, we get a ranked list of hosts that is associated with a ranked list
of terms. The results are very similar to what we get from HITS, but TOPHITS includes terms that identify
the topic of each set of authorities. In the simplest case, this approach can be used to correct the topic drift
problem. Here, for example, we collected pages about optimization as well as other topics. It is easy to find
the authorities on optimization by simply searching for key terms (in this case, “optimization” identifies the
12th factor).

The usefulness of this new TOPHITS approach is that it automatically discovers topics along with sets of
authorities. This can be used to extend HITS so that it can be used on large, multi-topic data sets.

6 Conclusions

Multi-way data representations and tensor decompositions are a novel technique for web search and re-
lated tasks. We have introduced the TOPHITS algorithm, which extends HITS [23] by identifying hubs
and authorities that are associated with prominent topics. We accomplish this with a three-way PARAFAC
decomposition [21] of the web graph, which provides more information than the two-way SVD used in HITS.
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Authorities

SCORE HOST

1st Singular Vector

0.97 www.ibm.com
0.24 www.alphaworks.ibm.com
0.08 www-128.ibm.com
0.05 www.developer.ibm.com
0.02 www.research.ibm.com

2nd Singular Vector

0.99 www.lehigh.edu
0.11 www2.lehigh.edu
0.06 www.lehighalumni.com
0.06 www.lehighsports.com

3rd Singular Vector

0.75 java.sun.com
0.38 www.sun.com
0.36 developers.sun.com
0.24 see.sun.com
0.16 www.samag.com
0.13 docs.sun.com
0.12 blogs.sun.com
0.08 sunsolve.sun.com
0.08 www.sun-catalogue.com
0.08 news.com.com

4th Singular Vector

0.60 www.pueblo.gsa.gov
0.45 www.whitehouse.gov
0.35 www.irs.gov
0.31 travel.state.gov
0.22 www.gsa.gov
0.20 www.ssa.gov
0.16 www.census.gov
0.14 www.govbenefits.gov
0.13 www.kids.gov
0.13 www.usdoj.gov

6th Singular Vector

0.97 mathpost.asu.edu
0.18 math.la.asu.edu
0.17 www.asu.edu
0.04 www.act.org
0.03 www.eas.asu.edu

Figure 6. HITS results
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Figure 7. Number of power method iterations per PARAFAC factor
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Topics Authorities

SCORE TERM SCORE HOST

1st Principal Factor

0.23 java 0.86 java.sun.com
0.18 sun 0.38 developers.sun.com
0.17 platform 0.16 docs.sun.com
0.16 solaris 0.14 see.sun.com
0.16 developer 0.14 www.sun.com
0.15 edition 0.09 www.samag.com
0.15 download 0.07 developer.sun.com
0.14 info 0.06 sunsolve.sun.com
0.12 software 0.05 access1.sun.com

0.05 iforce.sun.com

2nd Principal Factor

0.20 no-anchor-text 0.99 www.lehigh.edu
0.16 faculty 0.06 www2.lehigh.edu
0.16 search 0.03 www.lehighalumni.com
0.16 news
0.16 libraries
0.16 computing
0.12 lehigh

3rd Principal Factor

0.15 no-anchor-text 0.97 www.ibm.com
0.15 ibm 0.18 www.alphaworks.ibm.com
0.12 services 0.07 www-128.ibm.com
0.12 websphere 0.05 www.developer.ibm.com
0.12 web 0.02 www.redbooks.ibm.com
0.11 developerworks 0.01 www.research.ibm.com
0.11 linux
0.11 resources
0.11 technologies
0.10 downloads

4th Principal Factor

0.26 information 0.87 www.pueblo.gsa.gov
0.24 federal 0.24 www.irs.gov
0.23 citizen 0.23 www.whitehouse.gov
0.22 other 0.19 travel.state.gov
0.19 center 0.18 www.gsa.gov
0.19 languages 0.09 www.consumer.gov
0.15 u.s 0.09 www.kids.gov
0.15 publications 0.07 www.ssa.gov
0.14 consumer 0.05 www.forms.gov
0.13 free 0.04 www.govbenefits.gov

6th Principal Factor

0.26 president 0.87 www.whitehouse.gov
0.25 no-anchor-text 0.18 www.irs.gov
0.25 bush 0.16 travel.state.gov
0.25 welcome 0.10 www.gsa.gov
0.17 white 0.08 www.ssa.gov
0.16 u.s
0.15 house
0.13 budget
0.13 presidents
0.11 office

Figure 8. TOPHITS results

13

java.sun.com
developers.sun.com
docs.sun.com
see.sun.com
www.sun.com
www.samag.com
developer.sun.com
sunsolve.sun.com
access1.sun.com
iforce.sun.com
www.lehigh.edu
www2.lehigh.edu
www.lehighalumni.com
www.ibm.com
www.alphaworks.ibm.com
www-128.ibm.com
www.developer.ibm.com
www.redbooks.ibm.com
www.research.ibm.com
www.pueblo.gsa.gov
www.irs.gov
www.whitehouse.gov
travel.state.gov
www.gsa.gov
www.consumer.gov
www.kids.gov
www.ssa.gov
www.forms.gov
www.govbenefits.gov
www.whitehouse.gov
www.irs.gov
travel.state.gov
www.gsa.gov
www.ssa.gov


Topics Authorities

SCORE TERM SCORE HOST

12th Principal Factor

0.75 optimization 0.35 www.palisade.com
0.58 software 0.35 www.solver.com
0.08 decision 0.33 plato.la.asu.edu
0.07 neos 0.29 www.mat.univie.ac.at
0.06 tree 0.28 www.ilog.com
0.05 guide 0.26 www.dashoptimization.com
0.05 search 0.26 www.grabitech.com
0.05 engine 0.25 www-fp.mcs.anl.gov
0.05 control 0.22 www.spyderopts.com
0.05 ilog 0.17 www.mosek.com

13th Principal Factor

0.46 adobe 0.99 www.adobe.com
0.45 reader
0.45 acrobat
0.30 free
0.30 no-anchor-text
0.29 here
0.29 copy

16th Principal Factor

0.50 weather 0.81 www.weather.gov
0.24 office 0.41 www.spc.noaa.gov
0.23 center 0.30 lwf.ncdc.noaa.gov
0.19 no-anchor-text 0.15 www.cpc.ncep.noaa.gov
0.17 organization 0.14 www.nhc.noaa.gov
0.15 nws 0.09 www.prh.noaa.gov
0.15 severe 0.07 aviationweather.gov
0.15 fire 0.06 www.nohrsc.nws.gov
0.15 policy 0.06 www.srh.noaa.gov
0.14 climate 0.05 news.google.com

19th Principal Factor

0.22 tax 0.73 www.irs.gov
0.17 taxes 0.43 travel.state.gov
0.15 child 0.22 www.ssa.gov
0.15 retirement 0.08 www.govbenefits.gov
0.14 benefits 0.06 www.usdoj.gov
0.14 state
0.14 income
0.13 service
0.13 revenue
0.12 credit

Figure 9. More TOPHITS results
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Further differences with HITS are apparent. TOPHITS is not restricted to focused subgraphs. If multiple
topics exist in the graph, users can find the appropriate cluster by looking for the topic vectors in which their
query terms have a high score. For example, if the vector q represents the query, then qT w(i) is a measure of
the importance of the ith factor to the query. This basic premise can be used potentially to extend TOPHITS
to a query-based system. For instance, a query-dependent authority score of all web pages, â, could be
computed as

â =
p∑

i=1

(qT w(i)) v(i).

There are many directions for future research. Currently, we are studying an alternative decomposition
to PARAFAC called the Tucker model [36] for applications in information retrieval. We are also looking at
even higher order data sets that go beyond three-way models.

Although some accelerations have been proposed (see, e.g., [38]), much work remains to be done on
efficient computation of PARAFAC models for large-scale, sparse tensors. As a first step we have created
a MATLAB toolbox for working with sparse tensors that can efficiently handle up to one million nonzeros.
Extending these techniques to data sets the size of the Web is a topic of future study. While multiple vectors
need to be stored, they can be sparsified, which will reduce both the overall storage cost as well as the
computational cost for computing them. Further, convergence and stability analysis of TOPHITS should be
analyzed in the same way that Ng et al. [29, 30] have analyzed the stability of PageRank and HITS.

Another future topic is the use of tensor decompositions on semantic graphs to measure similarity, anal-
ogous to how Blondel et al. use the SVD to measure the similarity between directed graphs [4]. Such tech-
niques can be used in attribute prediction as has already been done using matrix decompositions [34] as well
as probabilistic-based approaches [18, 28].
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